Какие отношения между Газелью и джейраном в естественных экосистемах складываются

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
Раздел 8. Экология и учение о биосфере. Глава 8.3. Экология сообществ и экосистем.

Содержание страницы

8.3. Экология сообществ и экосистем

8.3.1. Понятие биоценоза, биогеоценоза, экосистемы

Живые организмы находятся между собой и абиотическими условиями среды обитания в определённых отношениях, образуя тем самым так называемые экологические системы.

Биоценоз — совокупность популяций разных видов, обитающих на определённой территории. Растительный компонент биоценоза называется фитоценозом, животный — зооценозом, микробный — микробоценозом. Ведущим компонентом в биоценозе является фитоценоз. Он определяет, каким будет зооценоз и микробоценоз.

Биотоп — определённая территория со свойственными ей абиотическими факторами среды обитания (климат, почва).

Биогеоценоз — совокупность биоценоза и биотопа (рис. 8.12).

Структура биогеоценоза

Биология | Выгодные отношения в природе: 3 типа комменсализма

Рис. 8.12. Структура биогеоценоза

Экосистема — система живых организмов и окружающих их неорганических тел, связанных между собой потоком энергии и круговоротом веществ (рис. 8.13).

Термин экосистема был предложен английским учёным А. Тенсли (1935), а термин биогеоценоз — российским учёным В.Н. Сукачёвым (1942). «Экосистема» и «биогеоценоз» — понятия близкие, но не синонимы. Биогеоценоз — это экосистема в границах фитоценоза. Экосистема — понятие более общее. Каждый биогеоценоз — это экосистема, но не каждая экосистема — биогеоценоз.

Единая экосистема нашей планеты называется биосферой. Биосфера — экосистема высшего порядка.

Функциональная схема экосистемы

Рис. 8.13. Функциональная схема экосистемы

8.3.2. Типы взаимоотношений между организмами

Существуют различные классификации взаимоотношений организмов.

Таблица 8.16. Классификация взаимоотношений организмов

Классификация взаимоотношений организмов

Воздействие одного вида на другой может быть положительным, отрицательным и нейтральным. При этом возможны разные комбинации типов воздействия (табл. 8.17, рис. 8.14—8.22).

Таблица 8.17. Типы отношений между организмами

Типы отношений между организмами

Примечание. (0) — существенное взаимодействие между популяциями отсутствует; (+) — благоприятное действие на рост, выживание или другие характеристики популяции; (-) — ингибирующее действие на рост или другие характеристики популяции. Типы 2-4 можно считать положительными взаимодействиями, 7-8 — отрицательными взаимодействиями, а типы 5 и 6 можно отнести к обеим группам.

Типы взаимоотношений. 11 класс.

В современной экологии часто используют понятие эксплуатация, которое включает отношения видов в пищевых цепях: растительноядность (фитофагию), хищничество и паразитизм. Либо все три случая называют хищничеством.

В ходе эволюции и развития экосистем существует тенденция к уменьшению роли отрицательных взаимодействий за счёт положительных, увеличивающих выживание обоих видов. Поэтому в зрелых экосистемах доля сильных отрицательных взаимодействий меньше, чем в молодых.

Протокооперация: рак-отшельник и актиния

Рис. 8.14. Протокооперация: рак-отшельник и актиния

8.3.3. Структура и функционирование экосистем

Структура биоценоза.

Различают видовую, пространственную и экологическую структуры биоценоза.

Видовая структура — число видов, образующих данный биоценоз, и соотношение их численности или массы. То есть видовая структура биоценоза определяется видовым разнообразием и количественным соотношением числа видов или их массы между собой.

Пространственная структура — распределение организмов раз-пых видов в пространстве (по вертикали и по горизонтали). Пространственная структура образуется прежде всего растительной частью биоценоза. Различают ярусность (вертикальная структура биоценоза) и мозаичность (структура биоценоза по горизонтали).

Экологическая структура — соотношение организмов разных экологических групп. Биоценозы со сходной экологической структурой могут иметь разный видовой состав. Это связано с тем, что одни м те же экологические ниши могут быть заняты сходными по экологии, но далеко не родственными видами. Такие виды называются замещающими, или викарирующими.

Любая популяция занимает определённое местообитание и определённую экологическую нишу. Местообитание — это территория, занимаемая популяцией, с комплексом присущих ей экологических факторов. Экологическая ниша — место популяции в природе, включающее не только положение вида в пространстве, но и его функциональную роль в сообществе (например, трофический статус) и его положение относительно абиотических условий существования (температуры, влажности и т. п.). Местообитание — это как бы «адрес» организма, а экологическая ниша — это его «профессия».

Функциональные группы организмов в экосистеме.

Как правило, и любой экосистеме можно выделить три функциональные группы организмов: продуценты, консументы и редуценты (табл. 8.18).

Таблица 8.18. Функциональные группы организмов в экосистеме

Группа Характеристика Организмы
Продуценты Автотрофные организмы, способные производить органические вещества из неорганических, используя фотосинтез или хемосинтез Растения и автотрофные бактерии
Консументы Гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов Животные, гетеротрофные растения, некоторые микроорганизмы
Редуценты Гетеротрофные организмы, питающиеся органическими остатками и разлагающие их до минеральных веществ Сапротрофные бактерии и грибы

Пищевые цепи и сети.

Питаясь друг другом, живые организмы образуют цепи питания. Цепь питания — последовательность организмов, по которой передаётся энергия, заключённая в пище, от её первоначального источника. Каждое звено цепи называется трофическим уровнем (табл. 8.19). В пищевой цепи редко бывает больше 4—5 трофических уровней.

Таблица 8.19. Трофические уровни в цепи питания

Уровень Группа организмов Организмы
Первый Продуценты Автотрофные организмы, преимущественно — зелёные растения
Второй Консументы первого порядка Растительноядные животные
Третий Консументы второго порядка Первичные хищники, питающиеся растительноядными животными
Четвёртый Консументы третьего порядка Вторичные хищники, питающиеся плотоядными животными
Последний Редуценты Сапротрофные бактерии и грибы, осуществляющие минерализацию — превращение органических остатков в неорганические вещества

Различают два типа пищевых цепей (рис. 8.15, табл. 8.20).

Y-образная модель потока энергии, показывающая связь между пастбищной и детритной пищевыми цепями

Рис. 8.15. Y-образная модель потока энергии, показывающая связь между пастбищной и детритной пищевыми цепями

Таблица 8.20. Типы пищевых цепей

Типы пищевых цепей

Таким образом, поток энергии, проходящий через экосистему, разбивается как бы на два основных направления. Энергия к консументам поступает через живые ткани растений или через запасы мёртвого органического вещества. Цепи выедания преобладают в водных экосистемах, цепи разложения — в экосистемах суши.

В сообществах пищевые цепи сложным образом переплетаются и образуют пищевые сети. В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из которых, в свою очередь, может служить пищей нескольким видам. С одной стороны, каждый трофический уровень представлен многими популяциями разных видов, с другой — многие популяции принадлежат сразу к нескольким трофическим уровням. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равновесия в экосистеме (рис. 8.16),

Функциональное замещение видов в экосистеме

Рис. 8.16. Функциональное замещение видов в экосистеме: А — исходная структура трофических цепей; Б — структура после выпадения одного из видов

Поток энергии и круговорот веществ в экосистеме.

В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. Выделенные в процессе жизнедеятельности или после гибели организмов (как автотрофов, таки гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы автотрофами для синтеза органических веществ. Так осуществляется биологический круговорот веществ.

В то же время энергия не может циркулировать в пределах экосистемы. Поток энергии (передача энергии), заключённой в пище, в экосистеме осуществляется однонаправленно от автотрофов к гетеротрофам.

При передаче энергии с одного трофического уровня на другой большая часть энергии рассеивается в виде тепла (в соответствии со вторым законом термодинамики) и только около 10 % от первоначального количества передаётся по пищевой цепи.

В результате пищевые цепи можно представить в виде экологических пирамид. Различают три основных типа экологических пирамид (рис. 8.17).

Пирамиды чисел (а), биомасс (б) и энергии (в), представляющие упрощённую экосистему

Рис. 8.17. Пирамиды чисел (а), биомасс (б) и энергии (в), представляющие упрощённую экосистему: люцерна — телята — мальчик 12 лет

Пирамида чисел (а) показывает, что если бы мальчик питался в течение одного года только телятиной, то для этого ему потребовалось бы 4,5 телёнка, л для пропитания телят необходимо засеять поле в 4 га люцерной, что составит 2 х 10 7 растений. В пирамиде биомасс (б) число особей заменено их биомассой. В пирамиде энергии (в) учтена солнечная энергия.

Читайте также:  Газель двигатель 33021 что стоит

Люцерна использует 0,24% солнечной энергии. Для накопления продукции телятами в течение года используется 8 % энергии, аккумулированной люцерной. На развитие и рост ребёнка в течение года используется 0,7 % энергии, аккумулированной телятами. В результате чуть более одной миллионной доли солнечной энергии, падающей на поле в 4 га, используется для пропитания ребёнка в течение одного года.

Пирамида чисел (пирамида Элтона) отражает уменьшение численности организмов от продуцентов к консументам.

Пирамида биомасс показывает изменение биомасс на каждом следующем трофическом уровне: для наземных экосистем пирамида биомасс сужается кверху, для экосистемы океана имеет перевёрнутый характер, что связано с быстрым потреблением фитопланктона консументами.

Пирамида энергии (продукции) имеет универсальный характер и отражает уменьшение количества энергии, содержащейся в продукции, создаваемой на каждом следующем трофическом уровне.

8.3.4. Биологическая продуктивность экосистем

Прирост биомассы в экосистеме, созданной за единицу времени, называется биологической продукцией (продуктивностью). Различают первичную и вторичную продукцию сообщества.

Первичная продукция — биомасса, созданная за единицу времени продуцентами. Она делится на валовую и чистую. Валовая первичная продукция (общая ассимиляция) — это общая биомасса, созданная растениями в ходе фотосинтеза. Часть её расходуется на поддержание жизнедеятельности растений — траты на дыхание (40—70%). Оставшаяся часть составляет чистую первичную продукцию (чистая ассимиляция), которая в дальнейшем используется консументами и редуцентами или накапливается в экосистеме.

Вторичная продукция — биомасса, созданная за единицу времени консументами. Она различна для каждого следующего трофического уровня.

Масса организмов определённой группы (продуцентов, консументов, редуцентов) или сообщества в целом называется биомассой. Самой высокой биомассой и продуктивностью обладают тропические дождевые леса, самой низкой — пустыни и тундры.

Если в экосистеме скорость прироста растений (образования первичной продукции) выше темпов переработки её консументами и редуцентами, то это ведёт к увеличению биомассы продуцентов. Если при этом присутствует недостаточная утилизация продуктов опада в цепях разложения, то происходит накопление мёртвого органического вещества. Это ведёт к заторфовыванию болот, образованию мощной лесной подстилки и т. п. В стабильных экосистемах биомасса остаётся постоянной, так как практически вся продукция расходуется в цепях питания.

8.3.5. Динамика экосистем

Изменения в сообществах могут быть циклическими и поступательными.

Циклические изменения — периодические изменения в биоценозе (суточные, сезонные, многолетние), при которых биоценоз возвращается к исходному состоянию.

Поступательные изменения — изменения в биоценозе, в конечном счёте приводящие к смене этого сообщества другим. Сукцессия — последовательная необратимая и закономерная смена одного биоценоза (экосистемы) другим(-ой) в результате влияния природных факторов (как внешних, так и внутренних) или воздействия человека (рис. 8.18).

Последовательность сообществ, сменяющих друг друга в сукцессии, называется сукцессионным рядом, или серией. Каждая предыдущая стадия (сообщество) формирует условия для развития последующего сообщества. К сукцессиям относятся опустынивание степей, зарастание озёр и образование болот и др. (табл. 8.21).

Сукцессия пихтово-кедровой тайги после опустошительного лесного пожара

Рис. 8.18. Сукцессия пихтово-кедровой тайги после опустошительного лесного пожара: числа в прямоугольниках — колебания в длительности прохождения фаз сукцессии (в скобках указан срок их окончания)

Таблица 8.21. Типы сукцессий

Типы сукцессий

В своём развитии экосистема стремится к устойчивому состоянию. Сукцессионные изменения происходят до тех пор, пока не сформируется стабильная экосистема, производящая максимальную биомассу на единицу энергетического потока. Сообщество, находящееся в равновесии с окружающей средой, называется климаксным.

8.3.6. Природные и антропогенные экосистемы

Классификация экосистем. Существуют различные классификации экосистем: по источнику энергии, участию человека, размерам и т.д. (табл. 8.22).

Таблица 8.22. Классификация экосистем
по источнику энергии и участию человека

Классификация экосистем по источнику энергии и участию человека

Природные экосистемы. В зависимости от природных и климатических условий можно выделить три группы и ряд типов природных экосистем (биомов). В основе классификации для наземных экосистем лежит тип естественной (исходной) растительности, для водных экосистем — гидрологические и физические особенности.

Наземные экосистемы:

  1. Тундра: арктическая и альпийская.
  2. Бореальные хвойные леса.
  3. Листопадный лес умеренной зоны.
  4. Степь умеренной зоны.
  5. Тропические злаковники и саванна.
  6. Чапараль (районы с дождливой зимой и засушливым летом).
  7. Пустыня: травянистая и кустарниковая.
  8. Полувечнозелёный тропический лес (районы с выраженными влажным и сухим сезонами).
  9. Вечнозелёный тропический дождевой лес.

Пресноводные экосистемы:

  • Лентические (стоячие воды): озёра, пруды, водохранилища и др.
  • Лотические (текучие воды): реки, ручьи, родники и др.
  • Заболоченные угодья: болота, болотистые леса, марши (приморские луга).

Морские экосистемы:

  1. Открытый океан (пелагическая экосистема).
  2. Воды континентального шельфа (прибрежные воды).
  3. Районы апвеллинга (плодородные районы с продуктивным рыболовством).
  4. Эстуарии (прибрежные бухты, проливы, устья рек, лиманы, солёные марши и др.).
  5. Глубоководные рифтовые зоны.

Помимо основных типов природных экосистем (биомов), различают переходные типы — экотоны. Например, лесотундра, смешанные леса умеренной зоны, лесостепь, полупустыни и др.

Антропогенные экосистемы. Агроэкосистемы (сельскохозяйственные экосистемы, агроценозы) — искусственные экосистемы, возникающие в результате сельскохозяйственной деятельности человека (пашни, сенокосы, пастбища). Агроэкосистемы создаются человеком для получения высокой чистой продукции автотрофов (урожая). В них, так же как в естественных сообществах, имеются продуценты (культурные растения и сорняки), консументы (насекомые, птицы, мыши и т, д.) и редуценты (сапротрофные грибы и бактерии). Обязательным звеном пищевых цепей в агроэкосистемах является человек.

Отличия агроценозов от естественных биоценозов:

  • незначительное видовое разнообразие (агроценоз состоит из небольшого числа видов, имеющих высокую численность);
  • короткие цепи питания;
  • неполный круговорот веществ (часть питательных элементов выносится с урожаем);
  • источником энергии является не только Солнце, но и деятельность человека (мелиорация, орошение, применение удобрений);
  • искусственный отбор (действие естественного отбора ослаблено, отбор осуществляет человек);
  • отсутствие саморегуляции (регуляцию осуществляет человек) и др.

Таким образом, агроценозы являются неустойчивыми системами и способны существовать только при поддержке человека.

Урбосистемы (урбанистические системы) — искусственные системы (экосистемы), возникающие в результате развития городов, и представляющие собой средоточие населения, жилых зданий, промышленных, бытовых, культурных объектов и т.д.

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
8.3. Экология сообществ и экосистем

Источник: egevip.ru

Типы связей между организмами в экосистемах

Экосистема — основное понятие экологии. Это совокупность сосуществующих видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей их средой обитания таким образом, что такое сообщество может сохраняться и функционировать на протяжении длительного периода геологического времени.

Сообщества взаимодействующих живых организмов представляют собой не случайный набор видов, а вполне определенную систему, достаточно устойчивую, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов. Такие системы принято называть биотическими сообществами, или биоценозами (от лат. — «биологическое сообщество»), а системы, включающие совокупность живых организмов и среду их обитания, — экосистемами.

Термин «биогеоценоз», также обозначает совокупность биологического сообщества и среды его обитания, но в несколько ином контексте. Биотическое сообщество состоит из сообщества растений, сообщества животных, сообщества микроорганизмов. Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга — биосферу. Биосфера также обладает устойчивостью и другими свойствами экосистемы.

Экология рассматривает взаимодействие живых организмов и неживой природы. Это взаимодействие, во-первых, происходит в рамках определенной системы (экологической системы, экосистемы) и, во-вторых, оно не хаотично, а определенным образом организовано, подчинено законам.

Экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени. Таким образом, для естественной экосистемы характерны три признака:

  • 1) экосистема обязательно представляет собой совокупность живых и неживых компонентов
  • 2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;
  • 3) экосистема сохраняет устойчивость в течение длительного времени, что обеспечивается определенной структурой биотических и абиотических компонентов.

Взаимосвязи между организмами можно разделить на межвидовые и внутривидовые.

Внутривидовые связи — биотические связи между особями одного вида. Примеры: конкуренция между самцами из-за самки, борьба особей из-за лидерства в группе, забота родителей о потомстве, охрана самцами молодых животных и самок.

Читайте также:  Установка сигнала заднего хода Газель

Межвидовые связи обычно классифицируются по “интересам”, на базе которых организмы строят свои отношения:

  • 1) пищевые (трофические) связи — формируют трофическую структуру экосистемы, которую мы уже рассмотрели ранее; помимо отношений, когда одни организмы служат пищей другим, сюда же можно отнести отношения между растениями и насекомыми-опылителями цветов, конкурентные отношения из-за похожей пищи и др.; это самый распространенный тип связей;
  • 2) топические связи (от греческого слова топос — место) — основаны на особенностях местообитания, например, отношения между деревьями и гнездящимися на них птицами, живущими на них насекомыми, отношения между организмами и их паразитами и т.п.;
  • 3) форические связи (от латинского слова форас — наружу) — отношения по распространению семян, плодов и т.п.;
  • 4) фабрические связи (от латинского слова фабрикато — изготовление) — использование растений, пуха, шерсти для постройки гнезд, убежищ и т.п.

Воздействие популяций двух видов друг на друга теоретически можно выразить в виде следующих комбинаций символов:

Здесь «0» — отсутствие какого-либо воздействия, «+» — положительное воздействие одного вида на другой, «-» — отрицательное воздействие. В результате мы получаем следующие основные виды взаимодействий.

1. Симбиоз (протокооперация и мутуализм) — (+,+)

Эти отношения взаимовыгодны для обоих партнеров. Подобные ассоциации между разными видами очень распространены в природе и играют крайне важную роль в эволюции разрозненного сообщества живых организмов в целостную надсистему вплоть до единого живого организма. Именно в этих отношениях формируется наибольшее количество синергетических эффектов, перерастающих в конечном итоге в ярко выраженные эмерджентные свойства надсистемы.

В симбиозе оба партнера оказываются взаимозависимыми друг от друга. Степень этой взаимозависимости может быть самой разной: от протокооперации, когда каждый из партнеров вполне может существовать самостоятельно при разрушении симбиоза, до мутуализма, когда оба партнера настолько взаимозависимы, что удаление одного из партнеров приводит к неминуемой гибели их обоих.

Примером протокооперации могут служить отношения крабов и кишечнополостных, которые прикрепляются к крабам, маскируя и защищая их своими стрекательными клетками. В то же время они используют крабов как транспортные средства и поглощают остатки их пищи.

Ярким примером мутуализма являются лишайники. Долгое время было непонятно, относить ли лишайники к грибам или к водорослям. Оказалось, что лишайник — это симбиотическая система гриба и водоросли, функциональная и морфологическая связь которых настолько тесна, что их можно рассматривать как особого рода организм, не похожий ни на один из слагающих его компонентов.

Поэтому лишайники обычно классифицируют не как симбиозы двух видов, а как отдельные виды живых организмов. Водоросль поставляет грибу продукты фотосинтеза, а гриб, будучи редуцентом, поставляет для водоросли минеральные вещества и, кроме того, является субстратом, на котором она живет. Это позволяет существовать лишайникам в крайне суровых условиях.

Случаи мутуализма чаще всего встречаются у организмов именно с разными потребностями. Очень часто, например, такие отношения возникают между автотрофами и гетеротрофами. При этом они как бы взаимодополняют друг друга. То есть в мутуализме наиболее полно проявляется принцип дополнительности, как наиболее фундаментальный закон природы.

Ущербная в каком-то отношении биосистема стремится найти партнера, способного «закрыть» эту ущербность, но по-своему тоже ущербного, чья ущербность закрывается первым партнером. Это еще не мутуализм, а протокооперация. Совместная эволюция таких партнеров способствует более узкой специализации каждого из них, при этом их изначальная ущербность становится еще более явной. Но это энергетически более выгодно для системы в целом, поэтому такая система приобретает большую жизнеспособность. Однако каждый из компонентов в отдельности становится крайне уязвимым.

Подобные механизмы в природе не редкость. Протон объединяется с электроном, обнуляя тем самым общий электрический заряд получаемого в результате атома водорода. Атомы двух разных химических элементов сливаются в молекулу, объединяя свои внешние электронные оболочки, чтобы создать одну общую оболочку с полным комплектом электронов.

Мужчина и женщина, являясь полными противоположностями друг другу, объединяются в семью, которая, как правило, гораздо более гармонична, чем каждый из людей в отдельности. В таких системах количество взаимодействий с внешним миром гораздо меньше, чем в разобщенном состоянии. То есть такие системы более независимы от внешнего мира. Именно минимум напряжений в отношениях с внешним миром отличает состояние гармонии, то есть наиболее устойчивое состояние, энергетически наиболее выгодное. Таким образом, объединение противоположных в каких-то отношениях живых существ в симбиозы есть прямое следствие принципа оптимальности.

Именно по пути укрепления симбиозов эволюционировали многие исходные формы жизни, прежде чем они становились едиными живыми организмами. Например, микроорганизмы, населяющие пищевой тракт жвачных животных, вовсе не являются частью организма коровы. Но только они способны образовывать из клетчатки, съеденной коровой, жирные кислоты, которые корова может ассимилировать. Непосредственно клетчатку коровы переваривать не могут, и поэтому они погибнут от голода, если стерилизовать их пищевой тракт, даже если кругом изобилие трав. Бактерии в свою очередь в пищевом тракте коровы обеспечиваются стабильной средой с постоянной температурой.

Очень богаты симбиотическими отношениями экосистемы. Общеизвестны, например, отношения мутуализма между корнями деревьев и грибницей (микроза), без которого не может быть северного леса (этот пример мы рассматривали раньше). Такая мутуалистическая система, как сосна-микроза, способна выжить даже на почвах, разрушенных интенсивным возделыванием сельскохозяйственных монокультур. Особо сложные симбиотические отношения сложились во влажных тропических лесах, что делает практически невозможным их восстановление после сплошных рубок, например, в бассейне Амазонки.

2. Комменсализм — (+,0)

Это слово произошло от французского слова комменсал — сотрапезник. Отношения комменсализма положительны для одного партнера и безразличны для другого. Частные случаями комменсализма:

нахлебничество — один организм питается остатками пищи другого, например, взаимоотношения львов и гиен, акул и рыб-прилипал и т.п.;

сотрапезничество — потребление разных частей или веществ одной и той же пищи или последовательная переработка одного и того же вещества; примером могут служить отношения между сапротрофами, разлагающими органику до минеральных веществ, и высшими растениями, которые потребляют эти вещества; другими примером являются копрофаги, питающиеся экскрементами других животных;

квартирантство (сожительство) — одни организмы используют другие как убежища или транспорт, например, рыба горчак откладывает икру в мантию двустворчатого моллюска, не принося ему вреда, многие насекомые обитают в гнездах птиц и норах грызунов, и т.п.

Комменсализм является наиболее простым типом положительных взаимодействий, являющимся, по-видимому, первым шагом к симбиозу.

3. Хищничество и паразитизм — (+,-)

Эти отношения положительны для одного вида и отрицательны для другого. Несмотря на кажущиеся отличия между хищниками и паразитами, их объединяет главное — они на кого-то отрицательно воздействуют, получая от этого выгоду. Отличия состоят лишь в том, что в отношениях хищник-жертва оба организма постоянно совершенствуются, а в отношениях паразит-хозяин адаптации паразита часто направлены на упрощение внутренней организации и приспособление к конкретному местообитанию на теле или в теле хозяина. Наверное, поэтому хищники нам более симпатичны, чем паразиты, но суть их одна и та же. Сам человек поставил себя в роли хищника по отношению практически ко всем видам живых организмов, но по отношению к биосфере в целом человек является, по-видимому, типичным паразитом (чем выше развитие цивилизации, тем более деградирует сам человек, «высокоцивилизованный» человек «один на один» с природой не выживет).

Понятие хищник в экологии гораздо шире, чем в общепринятом понимании. По большому счету, любого консумента можно отнести к хищникам. В частности растительноядные животные являются хищниками в отношении растений. Поэтому взаимоотношения эти очень разнообразны.

Например, одним из частных случаев подобных отношений является аллелопатия, или антибиоз, когда одна популяция продуцирует вещества — ингибиторы, подавляющие жизнедеятельность конкурирующей популяции. Так кусты черной смородины выделяют летучие вещества, подавляющие рост вишни, которая способна затенить и лишить влаги черную смородину, что случается, если высадить молодые смородиновые кусты в вишневые заросли. Однако сильные заросли черной смородины настолько сильно воздействуют на вишневые деревья, что они даже изгибаются в обратную сторону. Типичным примером антибиоза среди микроорганизмов является образование пенициллина плесневыми грибками, являющегося бактериальным ингибитором.

Читайте также:  Размеры феродо на диск сцепления Газель

Хищничество и паразитизм играют важную роль в жизни экосистем, регулируя плотность соответствующих популяций на достаточно низком уровне, сдерживая катастрофические вспышки из численности, одновременно не подавляя их полностью. Обычно в системе отношений хищник-жертва со временем устанавливаются постоянные незатухающие колебания численности хищников и жертв. Отсутствие хищника для какой-либо популяции может вызвать «взрыв» численности популяции «жертв», который подрывает кормовую базу данной популяции и вызывает к жизни какие-то иные механизмы корректировки численности, чаще всего в виде болезней или таких поведенческих механизмов, которые связаны с пренебрежением к жизни каждой отдельной особи. Подробней об этом будем говорить при изучении динамики популяций.

Действие принципа оптимальности приводит к тому, что со временем отрицательные взаимодействия ослабевают, достигая некоторого устойчивого равновесия, соответствующего минимуму внутренних напряжений. Наиболее разрушительные последствия возникают лишь там, где контакт жертв и хищников установлен сравнительно недавно.

Это в последнее время связано, в первую очередь, с деятельностью человека, перемещающего различные виды организмов с одного континента или острова на другой. Достаточно вспомнить катастрофическую вспышку численности колорадского жука на наших картофельных полях, поначалу уничтожавших практически весь урожай картофеля, пока человек не взял на себя роль хищника по отношению к данному насекомому. Рано или поздно эти отношения стабилизируются, но иногда экосистема вынуждена полностью перестроиться. Например, заболевание американского каштана, который ранее был важным компонентом лесов на востоке Северной Америки, паразитическим грибом, привезенным случайно из Китая, привело к гибели все крупные деревья, в силу чего каштан утратил свое доминирующее положение в этих лесах.

В ходе эволюции отношения хищник-жертва, а особенно паразит-хозяин, часто перерастают в мутуалистические отношения, которые энергетически наиболее выгодны по сравнению с хищничеством. Так в случае лишайников, гриб изначально был паразитом по отношению к водоросли. У некоторых более примитивных лишайников гриб фактически проникает в клетки водорослей, паразитируя на них.

У более развитых видов мицелий гриба не проникает в клетки водоросли, и оба организма живут в полной гармонии. Отношения хищник-жертва привели к образованию скотоводства, которое также является примером симбиоза. В природе подобные случаи также нередки, например, отношения муравьев и тлей.

Эти взаимоотношения невыгодны обоим партнерам. Они возникают обычно между организмами, претендующими на один и тот же ресурс. То есть конкуренция абсолютно противоположна симбиозу, возникающему, как правило, на почве противоположных потребностей. Конкуренция может возникать по поводу пространства, пищи или биогенных элементов, света, зависимости от хищников, подверженности болезням и т.д. Любая конкуренция приводит к тому, что в виду одинакового взаимного неприятия партнеров, они стремятся отдалиться друг от друга.

Особенно сильна внутривидовая конкуренция, так как особи одного и того же вида максимально близки друг к другу. Эти противоречия частично снимаются внутривидовыми механизмами, подробнее о которых будем говорить при изучении динамики популяций. Внутривидовая конкуренция способствует расширению сферы жизни вида (разбегание).

Отличие межвидовой конкуренции состоит в том, что ввиду специфической индивидуальности отношений каждого вида к факторам среды, популяции разных видов, населяющих одну экосистему, наоборот, стремятся сузить диапазон своего местообитания до зоны оптимальных условий, в которых он обладает какими-либо преимуществами по сравнению с конкурентами. Если же межвидовая конкуренция выражена слабо, то под влиянием внутривидовой конкуренции данный вид будет стремиться к экспансии как можно большего жизненного пространства.

Тенденция к экологическому разделению видов получила название принципа конкурентного исключения Г.Ф. Гаузе: если два вида с близкими требованиями к среде вступают в конкурентные отношения, то один из них должен либо погибнуть, либо изменить свой образ жизни. Если близкородственные виды живут в одном месте, то они, как правило, либо используют разные ресурсы, например, питаются в разных ярусах леса, либо активны в разное время. В любом случае их жизнедеятельность не должна пересекаться.

Поэтому случаи жесткой конкуренции в природе крайне редки и непродолжительны. Как и в случае хищничества, конфронтация видов характерна для экосистем только в переходные периоды, когда, например, по воле человека или каким-то другим причинам в экосистему внедряется новый вид, претендующий на кем-то используемые уже ресурсы.

В этом случае выживает, как правило, только один из конкурирующих видов, лучше удовлетворяющий требованиям данного местообитания, проигравший либо погибает, либо мигрирует из данной экосистемы (если, конечно, вмешательство человека не даст дополнительные преимущества менее приспособленному виду). Есть еще один выход, по которому часто идет природа: переадаптация, изменение своих требований, например, переход на новый вид пищи. Таким путем обычно создаются новые виды. Иногда достаточно просто сменить время питания или найти новое местообитание. В любом случае острота конкуренции обязательно снимается, то есть экосистема опять приходит в гармоничное состояние, характеризующееся минимумом конфронтаций.

5. Аменсализм — (-,0)

Слово аменсализм происходит от латинского слова аменс — безрассудный. Эти отношения отрицательны для одного вида, который угнетается другими видом, для которого эти отношения безразличны. Примером могут служить отношения между светолюбивыми растениями, случайно попавшими под полог елового леса, растение может погибнуть, деревьям же такое соседство безразлично.

6. Нейтрализм — (0,0)

Это такой вид отношений, когда организмы практически не влияют друг на друга, например, отношения белок и лосей в лесу. По большому счету, чистого нейтрализма в природе не бывает, так как все в природе взаимосвязано, и все мы косвенно как-то влияем друг на друга.

Ни один организм в природе не существует вне связей с условиями внешней среды, представленными абиотическими факторами и другими организмами, т.е. в составе экосистем. Эти связи — основное условие жизни организмов и их сообществ. Через них осуществляется образование цепей питания, регулирование численности организмов и их популяций, реализация механизмов устойчивости систем и другие явления. В процессе взаимосвязей происходит поглощение и рассеивание энергии и, в конечном счёте, осуществляется круговорот веществ, а также важнейшие, особенно для современного периода, средообразующие, средоохранные и средостабилизирующие функции живого вещества, организованного в системы.

Источник: www.studwood.net

ВПР по биологии 5 класс 2023 Варианты с ответами и решением

ВПР по биологии 5 класс 2023 Варианты с ответами и решением на официальном сайте источника онлайн. Весной 2023 года состоялись всероссийские проверочные работы ВПР по биологии в 5 классах.

После проведения ВПР в школах стали доступны реальные варианты и критерии оценки.

ВПР 2023 по биологии для 5 класса с ответами

Комплект заданий 1

Комплект заданий 2

Комплект заданий 3

Комплект заданий 4

Комплект заданий 5

Примеры заданий:

3.1. Выберите из приведенного ниже списка два примера оборудования, которые следует использовать для наблюдения за поведением панды во время кормления в зоопарке.

1) линейка
2) видеокамера
3) напольные весы
4) ручная лупа
5) часы

Запишите в таблицу номера выбранных примеров оборудования

3.2. Знаниями в области какой биологической науки Вы воспользуетесь, проводя такое наблюдение?

7. Прочитайте текст и выполните задания.
(1)Северный олень – животное средних размеров, туловище удлинённое, шея из-за сильной оброслости кажется толстой и массивной, ноги относительно короткие. (2)Голова пропорциональная, конец морды сплошь покрыт шерстью, довольно толстый, но не вздутый. (3)Взрослые самцы сбрасывают рога в ноябре–декабре по окончании периода спаривания; молодые животные – в апреле–мае; самки – в мае–июне после отела. (4)Линька происходит
один раз в год, длится с апреля по август. (5)Наибольшее число северных оленей погибает от волков. (6)В пищевой рацион оленей входят лишайники, разнообразные растительные и грибные (сыроежки, свинушки) корма, в меньшем количестве веточные корма (что сближает его с кабаргой).

7.1. В каких предложениях текста описывается внешнее строение северного оленя?

Запишите номера выбранных предложений.

Ответ. _______________________
7.2. Сделайте описание сыроежки по следующему плану.
А) Какую среду обитания освоила
сыроежка?
Ответ. ______________________
Б) Какой признак внешнего строения сыроежки указывает на её приспособленность к жизни в условиях этой среды? Ответ поясните.
Ответ. ______________________

В) Какие отношения складываются между сыроежкой и северным оленем в естественных экосистемах?

Источник: williroom.ru

Рейтинг
Загрузка ...